Parallel Approximate Ideal Restriction Multigrid for Solving the SN Transport Equations
نویسندگان
چکیده
منابع مشابه
Parallel Multigrid Methods for Transport Equations: The Anisotropic Case
A eecient parallel multilevel algorithm is developed for solving the transport equations on parallel computers for one-dimensional anisotropic scattering. The parallel algorithm is developed by using a multigrid in angle scheme that is known to attenuate both rapidly and slowly varying errors in angle. The spatial discretization scheme used is the modiied linear discontinu-ous nite element meth...
متن کاملAn approximate method for solving fractional system differential equations
IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Parallel Multigrid Algorithm for Solving Elliptic Equations in the Cardiac Bidomain Model
Elliptic partial differential equations (PDEs) are ubiquitous in problems concerned with modeling steady state field distributions in different media. In biology and medicine, the rapid numerical solution of elliptic PDEs are necessary for the bidomain model of myocardium and in the study of phenomena associated with external shock applications to the heart (defibrillation therapy). Here, we su...
متن کاملA Multigrid-in-time Algorithm for Solving Evolution Equations in Parallel
We consider optimal-scaling multigrid solvers for the linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a timemarching approach, meaning solving for one time step after the other. These traditional time integration techniques lead to optimal-scaling but not parallelizable algorithms. Howe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Science and Engineering
سال: 2020
ISSN: 0029-5639,1943-748X
DOI: 10.1080/00295639.2020.1747263